Vector Floor

Technical Analysis Indicator: floor

Fork me on GitHub

Function Prototype

/* Vector Floor */
/* Type: simple */
/* Input arrays: 1    Options: 0    Output arrays: 1 */
/* Inputs: real */
/* Options: none */
/* Outputs: floor */
int ti_floor_start(TI_REAL const *options);
int ti_floor(int size,
      TI_REAL const *const *inputs,
      TI_REAL const *options,
      TI_REAL *const *outputs);

Description

This documentation is still a work in progress. It has omissions, and it probably has errors too. If you see any issues, or have any general feedback, please get in touch.

Vector Floor applies the floor function to each input in the input array. The floor function returns the largest preceding integer from the input. e.g. floor(x) is the largest integer less than or equal to x.

$$floor_{t} = \lfloor input_{t} \rfloor$$

See Also

References

Example Usage

Calling From C

/* Example usage of Vector Floor */
/* Assuming that 'input' is a pre-loaded array of size 'in_size'. */
TI_REAL *inputs[] = {input};
TI_REAL options[] = {}; /* No options */
TI_REAL *outputs[1]; /* floor */

/* Determine how large the output size is for our options. */
const int out_size = in_size - ti_floor_start(options);

/* Allocate memory for output. */
outputs[0] = malloc(sizeof(TI_REAL) * out_size); assert(outputs[0] != 0); /* floor */

/* Run the actual calculation. */
const int ret = ti_floor(in_size, inputs, options, outputs);
assert(ret == TI_OKAY);

Calling From Lua (with Tulip Chart bindings)

-- Example usage of Vector Floor
floor = ti.floor(input)

Example Calculation

dateinputfloor
2005-11-0181.5981.00
2005-11-0281.0681.00
2005-11-0382.8782.00
2005-11-0483.0083.00
2005-11-0783.6183.00
2005-11-0883.1583.00
2005-11-0982.8482.00
2005-11-1083.9983.00
2005-11-1184.5584.00
2005-11-1484.3684.00
2005-11-1585.5385.00
2005-11-1686.5486.00
2005-11-1786.8986.00
2005-11-1887.7787.00
2005-11-2187.2987.00

Chart

 

Other Indicators

Previous indicator: Fisher Transform

Next indicator: Forecast Oscillator

Random indicator: Chaikins Volatility