Mesa Sine Wave

Technical Analysis Indicator: msw

Fork me on GitHub

Function Prototype

/* Mesa Sine Wave */
/* Type: indicator */
/* Input arrays: 1    Options: 1    Output arrays: 2 */
/* Inputs: real */
/* Options: period */
/* Outputs: msw_sine, msw_lead */
int ti_msw_start(TI_REAL const *options);
int ti_msw(int size,
      TI_REAL const *const *inputs,
      TI_REAL const *options,
      TI_REAL *const *outputs);

Description

This documentation is still a work in progress. It has omissions, and it probably has errors too. If you see any issues, or have any general feedback, please get in touch.

The Mesa Sine Wave helps identify cycles.

It takes one parameter, the period n.

TODO

See Also

References

Example Usage

Calling From C

/* Example usage of Mesa Sine Wave */
/* Assuming that 'input' is a pre-loaded array of size 'in_size'. */
TI_REAL *inputs[] = {input};
TI_REAL options[] = {5}; /* period */
TI_REAL *outputs[2]; /* msw_sine, msw_lead */

/* Determine how large the output size is for our options. */
const int out_size = in_size - ti_msw_start(options);

/* Allocate memory for each output. */
outputs[0] = malloc(sizeof(TI_REAL) * out_size); assert(outputs[0] != 0); /* msw_sine */
outputs[1] = malloc(sizeof(TI_REAL) * out_size); assert(outputs[1] != 0); /* msw_lead */

/* Run the actual calculation. */
const int ret = ti_msw(in_size, inputs, options, outputs);
assert(ret == TI_OKAY);

Calling From Lua (with Tulip Chart bindings)

-- Example usage of Mesa Sine Wave
msw_sine, msw_lead = ti.msw(input, 5)

Example Calculation

period = 5

dateinputmsw_sinemsw_lead
2005-11-0181.59
2005-11-0281.06
2005-11-0382.87
2005-11-0483.00
2005-11-0783.61
2005-11-0883.15-0.06-0.75
2005-11-0982.84-0.72-1.00
2005-11-1083.990.610.99
2005-11-1184.551.000.64
2005-11-1484.360.52-0.24
2005-11-1585.530.43-0.33
2005-11-1686.540.860.25
2005-11-1786.890.67-0.05
2005-11-1887.770.44-0.32
2005-11-2187.290.22-0.53

Chart

 

Other Indicators

Previous indicator: Momentum

Next indicator: Vector Multiplication

Random indicator: Time Series Forecast